# Birth-and-death evolutions in random environments 

Martin Friesen<br>joint work with: Yu. G. Kondratiev<br>University of Wuppertal Faculty of Mathematics

02.12.2016

## Setting

## What is modelled?

(1) Tumour evolution and related quantities such as

- Volume/size of tumour
- Growth of tumour patters, speed of growth, shape of growth
- Mutations, heterogenity and homogenity
(2) Interplay between the tumour and
- Immune system
- Healthy cells
- Environmental factors
(3) And many other...

Models should be as simple as possible, but as detailed as necessary.
Simplification: Tumour can be described on different scales

$$
\text { microscopic }<\text { mesoscopic }<\text { macroscopic }
$$

## Setting

## How do we model?

(1) Ordinary differential equations (also systems of ODEs)

- Mesoscopic or macroscopic desription.
- Describe specific quantities of the tumour in certain regimes.
- Comparably easy for the analysis and simulations $\rightarrow$ compare with data.
- In many cases deterministic.
- No spatial structure.
- How to justify such equations?

What are the right equations?
(2) Stochastic models

- microscopic description of cells, mutations, interactions
- Describe collection of cells as a stochastic process.
- Analysis and simulations are more challenging $\rightarrow$ how to compare with experimental data?
- Include a spatial structure.

What are the right models?

## Setting

## What are we interested in?

(1) Description of microscopic tumours by spatial birth-and-death models.
(2) Reducing complexity

- What are the main building blocks?
- Derivation of effective equations from these models $\rightarrow$ spatial analogues of ODEs
- What is the effect of: immune system, other cells, environmental factors?
(3) Time evolution of (spatial) correlations
(9) Invariant states, equilibrium states

What is not done: Comparison with data

## Going beyond

What could/should, in principle, be done
(1) Cells with additional marks (mutations, fitness, ...)
(2) Motion of cells (migration, metastasis, go-or-growth, ...)
(3) Non-Markov dynamics (equations with delay, fractional derivatives in time, ...)
(9) Time-inhomogeneous models (time-dependent parameters due to therapy)

## System of Tumour cells

We suppose that

- Tumour cells are indistinguishable (among one type)
- Sufficiently many cells, i.e. statistical description is adequate.
- Each cell has position and maybe other traits. It can be represented as an element $x \in \mathbb{R}^{d}$.
The collection of all cells forms a microscopic state

$$
\gamma=\left\{x_{n} \in \mathbb{R}^{d} \mid n \geq 1\right\}
$$

System may be:

- finite, i.e. $|\gamma|<\infty$.
- infinite, i.e. $|\gamma \cap K|<\infty$ for all balls $K \subset \mathbb{R}^{d}$.

$$
\Gamma^{S}=\left\{\gamma \subset \mathbb{R}^{d}| | \gamma \cap K \mid<\infty \text { for all balls } K \subset \mathbb{R}^{d}\right\}
$$

We mainly focus on the infinite case.

## Environment

Environment is another particle system with microscopic state

$$
\omega=\left\{y_{n} \in \mathbb{R}^{d} \mid n \geq 1\right\} .
$$

Configuration space

$$
\Gamma^{E}=\left\{\omega \subset \mathbb{R}^{d}| | \omega \cap K \mid<\infty \text { for all balls } K \subset \mathbb{R}^{d}\right\} .
$$

Environment could be

- Fixed configuration $\omega \in \Gamma^{E}$.
- An equilibrium process on $\Gamma^{E}$ with some invariant measure.
- Non-equilibrium spatial birth-and-death process.

Joint microscopic state is $(\gamma, \omega)$, i.e. an element in

$$
\Gamma^{2}:=\Gamma^{S} \times \Gamma^{E}
$$

Statistical description
Observable quantities are

$$
\langle F\rangle_{\mu}:=\int_{\Gamma^{S} \times \Gamma^{E}} F(\gamma, \omega) \mathrm{d} \mu(\gamma, \omega)
$$

where $\mu$ is a probability measure (= state) on $\Gamma^{S} \times \Gamma^{E}$

- Number of tumour cells in volume $\Lambda^{S}$

$$
\int_{\Gamma^{S}}\left|\gamma \cap \Lambda^{S}\right| \mathrm{d} \mu(\gamma, \omega) .
$$

- Second order correlations: $\Lambda^{S} \times \Lambda^{E} \subset \mathbb{R}^{d} \times \mathbb{R}^{d}$

$$
\int_{\Gamma^{S} \times \Gamma^{E}}\left|\gamma \cap \Lambda^{S}\right|\left|\omega \cap \Lambda^{E}\right| \mathrm{d} \mu(\gamma, \omega)
$$

- Higher order correlations

$$
\int_{\Gamma^{S} \times \Gamma^{E}} \prod_{k=1}^{n}\left|\gamma \cap \Lambda_{k}^{S}\right| \cdot \prod_{k=1}^{m}\left|\gamma \cap \Lambda_{k}^{E}\right| \mathrm{d} \mu(\gamma, \omega) .
$$

## Space of admissible measures

$\mu$ state on $\Gamma^{2}$. Correlation function $k_{\mu}^{(n, m)}$ is locally integrable function s.t.

$$
\int_{\Gamma^{S} \times \Gamma^{E}} \prod_{k=1}^{n}\left|\gamma \cap \Lambda_{k}^{S}\right| \cdot \prod_{k=1}^{m}\left|\gamma \cap \Lambda_{k}^{E}\right| \mathrm{d} \mu(\gamma, \omega)=\frac{1}{n!} \frac{1}{m!} \int_{\Lambda_{1}^{+} \times \cdots \times \Lambda_{n}^{+} \Lambda_{1}^{-} \times \ldots \Lambda_{m}^{-}} \int_{\mu}^{(n, m)} \mathrm{d} x \mathrm{~d} y .
$$

Example:

- $k^{(0,0)}=\mu\left(\Gamma^{2}\right)=1$.
- $n+m=1$ yields for $\Lambda \subset \mathbb{R}^{d}$ compact

$$
\int_{\Gamma^{2}}\left|\gamma^{+} \cap \Lambda\right| \mathrm{d} \mu(\gamma)=\int_{\Lambda} k_{\mu}^{(1,0)}(x) \mathrm{d} x, \quad \int_{\Gamma^{2}}\left|\gamma^{-} \cap \Lambda\right| \mathrm{d} \mu(\gamma)=\int_{\Lambda} k_{\mu}^{(0,1)}(y) \mathrm{d} y .
$$

Up to some mathematical aspects, we obtain a one-to-one correspondence

$$
\text { states } \mu \longleftrightarrow \text { correlation functions } k_{\mu}=\left(k_{\mu}^{(n, m)}\right)_{n, m=0}^{\infty}
$$

## Dynamics

Model time evolution by an evolution of states

$$
\mu_{0} \longmapsto \mu_{t} \quad \text { or } \quad k_{\mu_{0}}^{(n, m)} \longmapsto k_{\mu_{t}}^{(n, m)} .
$$

Elementary events:

- Birth: Each particle creates a new particle, a particle may appear from the outside.

$$
\gamma \longmapsto \gamma \cup\{x\}, \quad x \notin \gamma .
$$

Birth rate: $b(x, \gamma, \omega) \geq 0$.

- Death: Particles have a lifetime and compete for resources.

$$
\gamma \longmapsto \gamma \backslash\{x\}, \quad x \in \gamma .
$$

Death rate: $d(x, \gamma, \omega) \geq 0$.

- Motion, migration, mutations and many others are possible.
$\omega \in \Gamma^{E}$ takes influence of environment into account.


## Markov operator

Let $L_{\gamma}^{S}(\omega)$ be the Markov operator for the tumour cells, i.e.

$$
\begin{aligned}
\left(L_{\gamma}^{S}(\omega) F\right)(\gamma)= & \sum_{x \in \gamma} d(x, \gamma \backslash x, \omega)(F(\gamma \backslash x)-F(\gamma)) \\
& +\int_{\mathbb{R}^{d}} b(x, \gamma, \omega)(F(\gamma \cup x)-F(\gamma)) \mathrm{d} x .
\end{aligned}
$$

Environment is assumed to be of similar form but with different birth-and-death rates. These rates will be specified later on.

## Dynamics

Markov evolution is described by solutions to (backward) Kolmogorov equation

$$
\frac{\partial F_{t}}{\partial t}=\left(L_{\gamma}^{S}(\omega)+L_{\omega}^{E}\right) F_{t},\left.\quad F_{t}\right|_{t=0}=F
$$

Then $\left\langle F_{t}\right\rangle_{\mu}$ is the time evolution of the expected value of $F$ in state $\mu$.
We are interested in the evolution of states $\mu_{0} \longmapsto \mu_{t}$.
We should have $\left\langle F_{t}\right\rangle_{\mu}=\langle F\rangle_{\mu_{t}}$.
Can rewrite this into a system of equations

$$
\frac{\partial k_{t}^{(n, m)}}{\partial t}=\left(L^{\Delta} k_{t}\right)^{(n, m)},\left.\quad k_{t}^{(n, m)}\right|_{t=0}=k_{0}^{(n, m)}
$$

where $L^{\Delta}$ is a double-matrix. Then

$$
\left(k_{t}^{(n, m)}\right)_{n, m=0}^{\infty} \longleftrightarrow \mu_{t}
$$

## Evolution of correlation functions

$$
\frac{\partial k_{t}^{(n, m)}}{\partial t}=\left(L^{\Delta} k_{t}\right)^{(n, m)},\left.\quad k_{t}^{(n, m)}\right|_{t=0}=k_{0}^{(n, m)}
$$

- $L^{\Delta}$ can, for many models, be computed explicitly from $L_{\gamma}^{S}(\omega), L_{\omega}^{E}$.
- Explicit form in coordinates

$$
\frac{\partial k_{t}^{(n, m)}}{\partial t}=\sum_{k, l=0}^{\infty} L_{k l, n m}^{\Delta} k_{t}^{(k, l)},\left.\quad k_{t}^{(n, m)}\right|_{t=0}=k_{0}^{(n, m)} .
$$

- In some cases the right-hand side has recursive structure, i.e.

$$
\frac{\partial k_{t}^{(n, m)}}{\partial t}=\sum_{k, l=0}^{n, m} L_{k l, n m}^{\Delta} k_{t}^{(k, l)},\left.\quad k_{t}^{(n, m)}\right|_{t=0}=k_{0}^{(n, m)}
$$

Hence it may be solved explicitly.

## Aim: Simplification

(1) We are interested in the projections $\mu_{t}^{S}$ of $\mu_{t}$ onto $\Gamma$, i.e.

$$
\mu_{t}^{S}(A):=\mu_{t}\left(A \times \Gamma^{E}\right) \longleftrightarrow k_{\mu_{t}^{S}}^{(n)}=k_{\mu_{t}}^{(n, 0)}
$$

Equation for $k_{\mu_{t}^{s}}^{(n)}$ depends on all $k_{\mu_{t}}^{(n, m)}$. Projection is not Markov.

- Find a closed equation (after proper scaling) for $\mu_{t}^{S}$ or $k_{\mu_{t}^{S}}$.
- The limiting equation should recover the Markov property.
- Works in a certain regime of parameters on the interactions.
(2) Find closed equations for particle densities $k_{t}^{(1,0)}, k_{t}^{(0,1)}$, i.e.

$$
\frac{\partial \rho_{t}^{S}(x)}{\partial t}=v^{S}\left(\rho_{t}^{S}, \rho_{t}^{E}\right)(x), \quad \frac{\partial \rho_{t}^{E}(x)}{\partial t}=v^{E}\left(\rho_{t}^{E}\right)(x)
$$

Mesoscopic equations which are obtained after certain scalings.

## Environment

Environment is Glauber dynamics with formal Markov operator

$$
\begin{aligned}
\left(L_{\omega}^{E} F\right)(\omega)= & \sum_{x \in \omega}(F(\omega \backslash x)-F(\omega)) \\
& +z \int_{\mathbb{R}^{d}} e^{-E_{\varphi}(x, \omega)}(F(\omega \cup x)-F(\omega)) \mathrm{d} x
\end{aligned}
$$

- $z \geq 0$ activity parameter.
- Relative energy

$$
E_{\varphi}(x, \omega)=\sum_{y \in \omega} \varphi(x-y), \quad x \in \mathbb{R}^{d}, \quad \omega \in \Gamma^{E}
$$

- Death rate is constant to 1 .
- Birth rate is given by $z e^{-E_{\varphi}(x, \omega)}$.


## Environment

## Assumptions

- Interaction potential $\varphi(x)=\varphi(-x) \geq 0$ with integrability condition

$$
\beta(\varphi):=\int_{\mathbb{R}}\left(1-e^{-\varphi(x)}\right) \mathrm{d} x<\infty .
$$

- Small activity regime

$$
z<\frac{1}{e \beta(\varphi)}
$$

Then

- There exists an evolution of states $\left(\mu_{t}\right)_{t \geq 0}$.
- There exists a unique invariant measure (Gibbs measure) $\mu_{\mathrm{inv}}$.
- Evolution of states is ergodic, i.e.

$$
\mu_{t} \longrightarrow \mu_{\mathrm{inv}} \quad \text { or } \quad k_{\mu_{t}}^{(n)} \longrightarrow k_{\mu_{\mathrm{inv}}}^{(n)}, \forall n, \quad t \longrightarrow \infty
$$

## System

Free branching with rates

$$
\begin{aligned}
d(x, \gamma \backslash x, \omega) & =m+g \sum_{y \in \omega} d(x-y) \\
b(x, \gamma, \omega) & =\sum_{y \in \gamma} a^{+}(x-y)
\end{aligned}
$$

- $m \geq 0$ mortality rate of cells.
- $a^{+}(x-y)=a^{+}(y-x) \geq 0$ integrable and bounded, proliferation kernel for cells
- $d(x-y)=d(y-x) \geq 0$ integrable and bounded, interaction with environment.
- $g \geq 0$ coupling constant for interaction with environment.

Consider finite system such that $m<\lambda:=\int_{\mathbb{R}^{d}} a^{+}(x) \mathrm{d} x$.

## Reduced description

Scaling Markov operator $L_{\gamma}^{S}(\omega)+\frac{1}{\varepsilon} L_{\omega}^{E}$ for $\varepsilon>0$ yields when $\varepsilon \rightarrow 0$ reduced description:

$$
\begin{aligned}
\bar{d}(x, \gamma \backslash x) & =m+\bar{g}(x) \\
\bar{b}(x, \gamma) & =\sum_{y \in \gamma} a^{+}(x-y)
\end{aligned}
$$

where

$$
\begin{aligned}
\bar{g}(x) & =g \int_{\Gamma^{E}} \sum_{y \in \omega} d(x-y) \mathrm{d} \mu_{\mathrm{inv}}(\omega)=g z \int_{\Gamma^{E}} \int_{\mathbb{R}^{d}} d(x-y) e^{-E_{\varphi}(y, \omega)} \mathrm{d} y \mathrm{~d} \mu_{\mathrm{inv}}(\omega) \\
& =g \int_{\mathbb{R}^{d}} d(x-y) k_{\mu_{\mathrm{inv}}}^{(1)}(y) \mathrm{d} y
\end{aligned}
$$

## Reduced description

## Consequences

(1) System is effectively a free branching process with modified mortality rate.
(2) Space inhomogeneous death rate may be a consequence of interactions with environment.
(3) Different environments yield the same reduced description:

- depends only on invariant state and interactions.
(9) Environment may regulate the system:
- Without environment or interactions the number of particles grows exponentially, since

$$
m<\lambda:=\int_{\mathbb{R}^{d}} a^{+}(x) \mathrm{d} x
$$

- For $g \cdot z$ large enough all particles die, i.e. $\bar{\mu}_{t} \longrightarrow \delta_{\emptyset}$ as $t \rightarrow \infty$. Equivalently $k_{\bar{\mu}_{t}}^{(n)} \longrightarrow 0$ for $n \geq 1$ as $t \rightarrow \infty$.


## System

Free branching with birth-and-death rates

$$
\begin{aligned}
d(x, \gamma \backslash x, \omega) & =m+\sum_{y \in \gamma \backslash x} a^{-}(x-y)+g_{0} \sum_{y \in \omega} d(x-y) \\
b(x, \gamma, \omega) & =\sum_{y \in \gamma} a^{+}(x-y)+g_{1} \sum_{y \in \omega} b(x-y)
\end{aligned}
$$

- $a^{-}(x-y)=a^{-}(y-x) \geq 0$ integrable and bounded, competition kernel for cells.
- $b(x-y)=b(y-x) \geq 0$ integrable and bounded, proliferation kernel from environment.
- $g_{0}, g_{1} \geq 0$ coupling constant for interaction with environment.


## Reduced description

Suppose the following conditions:

- There exists $\Theta>0$ such that $\Theta a^{-}-a^{+}$is a stable potential.
- There exists $c>0$ such that $b \leq c \cdot d$.
- $m$ is sufficiently large.

Scaling Markov operator $L_{\gamma}^{S}(\omega)+\frac{1}{\varepsilon} L_{\omega}^{E}$ for $\varepsilon>0$ yields when $\varepsilon \rightarrow 0$ reduced description:

$$
\begin{aligned}
\bar{d}(x, \gamma \backslash x) & =m+\bar{g}(x)+\sum_{y \in \gamma \backslash x} a^{-}(x-y) \\
\bar{b}(x, \gamma) & =\sum_{y \in \gamma} a^{+}(x-y)+\bar{z}(x)
\end{aligned}
$$

where $\bar{z}(x)=g_{1} \int_{\Gamma^{E}} \sum_{y \in \omega} b(x-y) \mathrm{d} \mu_{\text {inv }}(\omega)$ and

$$
\bar{g}(x)=g_{0} \int_{\Gamma} \sum_{y \in \omega} d(x-y) \mathrm{d} \mu_{\mathrm{inv}}(\omega)
$$

## Consequences

Without presence of environment:

- Dynamics is asymptotically degenerated, i.e. $\mu_{t} \longrightarrow \delta_{\emptyset}$ as $t \rightarrow \infty$.

Equivalently $k_{\mu_{t}}^{(n)} \longrightarrow 0$ for all $n \geq 1$ as $t \rightarrow \infty$.
In the presence of environment

- Dynamics has non-trivial invariant measure $\mu_{\infty}$ such that $\mu_{t} \longrightarrow \mu_{\infty}$ as $t \rightarrow \infty$. Equivalently $k_{\mu_{t}}^{(n, m)} \longrightarrow k_{\mu_{\infty}}^{(n, m)}$ for all $n, m \geq 0$ as $t \rightarrow \infty$.

After reduced description

- Dynamics has non-trivial invariant measure $\bar{\mu}_{\infty}$ such that $\bar{\mu}_{t} \longrightarrow \bar{\mu}_{\infty}$ as $t \rightarrow \infty$. Equivalently $k_{\bar{\mu}_{t}}^{(n)} \longrightarrow k_{\bar{\mu}_{\infty}}^{(n)}$ for all $n \geq 0$ as $t \rightarrow \infty$.


## Consequences

Without presence of environment:

- Kinetic equation is

$$
\frac{\partial \rho_{t}(x)}{\partial t}=-m \rho_{t}(x)-\int_{\mathbb{R}^{\boldsymbol{d}}} a^{-}(x-y) \rho_{t}(y) \mathrm{d} y \rho_{t}(x)+\int_{\mathbb{R}^{\boldsymbol{d}}} a^{+}(x-y) \rho_{t}(y) \mathrm{d} y
$$

In the presence of environment

$$
\begin{aligned}
\frac{\partial \rho_{t}^{E}(x)}{\partial t}= & -\rho_{t}^{E}(x)+z e^{-\int_{\mathbb{R}^{d}} \varphi(x-y) \rho_{t}^{E}(y) \mathrm{d} y} \\
\frac{\partial \rho_{t}^{S}(x)}{\partial t}= & -m \rho_{t}^{S}(x)-\int_{\mathbb{R}^{d}} a^{-}(x-y) \rho_{t}^{S}(y) \mathrm{d} y \rho_{t}^{S}(x)-\int_{\mathbb{R}^{d}} d(x-y) \rho_{t}^{E}(y) \mathrm{d} y \rho_{t}^{S}(x) \\
& +\int_{\mathbb{R}^{d}} a^{+}(x-y) \rho_{t}^{S}(y) \mathrm{d} y+\int_{\mathbb{R}^{d}} b(x-y) \rho_{t}^{E}(y) \mathrm{d} y .
\end{aligned}
$$

After reduced description

$$
\frac{\partial \bar{\rho}_{t}(x)}{\partial t}=-(m+\bar{g}(x)) \bar{\rho}_{t}(x)+\int_{\mathbb{R}^{d}} a^{+}(x-y) \bar{\rho}_{t}(y) \mathrm{d} y+\bar{z}(x)
$$

## Dynamics

## Tumour cells

$$
\begin{aligned}
d(x, \gamma \backslash x, \omega) & =\sum_{y \in \omega} a^{-}(x-y) \\
b(x, \gamma, \omega) & =\sum_{y \in \gamma} a^{+}(x-y)
\end{aligned}
$$

Immune system

$$
\begin{aligned}
d^{E}(x, \gamma, \omega \backslash x) & =m+\sum_{y \in \gamma} b^{-}(x-y) \\
b^{E}(x, \gamma, \omega) & =\sum_{y \in \omega}\left(1-e^{-E_{\varphi}(y, \gamma)}\right) b^{+}(x-y)+z
\end{aligned}
$$

Derive kinetic equations.

## Dynamics

Kinetic equations

$$
\begin{aligned}
\frac{\partial \rho_{t}^{S}(x)}{\partial t}= & -\int_{\mathbb{R}^{d}} a^{-}(x-y) \rho_{t}^{E}(y) \mathrm{d} y \rho_{t}^{S}(x)+\int_{\mathbb{R}^{d}} a^{+}(x-y) \rho_{t}^{S}(y) \mathrm{d} y \\
\frac{\partial \rho_{t}^{E}(x)}{\partial t}= & -\left(m-\int_{\mathbb{R}^{d}} b^{-}(x-y) \rho_{t}^{S}(y) \mathrm{d} y\right) \rho_{t}^{E}(x) \\
& +\int_{\mathbb{R}^{d}} b^{+}(x-y)\left(1-e^{-\int_{\mathbb{R}^{d}} \varphi(w-y) \rho_{t}^{S}(w) \mathrm{d} w}\right) \rho_{t}^{E}(y) \mathrm{d} y+z
\end{aligned}
$$

Space-homogeneous version: $X=\rho^{S}$ and $Y=\rho^{E}$

$$
\begin{aligned}
& X^{\prime}=\left(a^{+}-a^{-} Y\right) X \\
& Y^{\prime}=z-m Y+b^{+} Y\left(1-e^{-\varphi X}\right)-b^{-} X Y
\end{aligned}
$$

## Dynamics

## Tumour cells

$$
\begin{aligned}
d(x, \gamma \backslash x, \omega) & =m^{s}+\sum_{y \in \gamma \backslash x} b^{-}(x-y)+\sum_{y \in \omega} \varphi^{-}(x-y) \\
b(x, \gamma, \omega) & =\sum_{y \in \gamma} b^{+}(x-y)+\sum_{y \in \omega} \varphi^{+}(x-y)
\end{aligned}
$$

Immune system

$$
\begin{aligned}
d^{E}(x, \gamma, \omega \backslash x) & =m^{E}+\sum_{y \in \omega \backslash x} a^{-}(x-y) \\
b^{E}(x, \gamma, \omega) & =\sum_{y \in \omega} a^{+}(x-y)+z
\end{aligned}
$$

Environment has still invariant measure $\mu_{\mathrm{inv}}$ with $\mu_{t}^{E} \longrightarrow \mu_{\mathrm{inv}}$ as before.

## Reduced description

Have birth-and-death rates

$$
\begin{aligned}
\bar{d}(x, \gamma \backslash x) & =m^{s}+\bar{\varphi}^{-}(x)+\sum_{y \in \gamma \backslash x} b^{-}(x-y) \\
\bar{b}(x, \gamma) & =\sum_{y \in \gamma} b^{+}(x-y)+\bar{z}(x)
\end{aligned}
$$

where $\bar{\varphi}^{-}(x)=\int_{\Gamma} \sum_{y \in \omega} \varphi^{-}(x-y) \mathrm{d} \mu_{\operatorname{inv}}(\omega)$ and

$$
\bar{z}(x)=\int_{\Gamma E} \sum_{y \in \omega} \varphi^{+}(x-y) \mathrm{d} \mu_{\mathrm{inv}}(\omega) .
$$

## Kinetic equations

Without environment

$$
\frac{\partial \rho_{t}(x)}{\partial t}=-\left(m^{s}+\int_{\mathbb{R}^{d}} b^{-}(x-y) \rho_{t}(y) \mathrm{d} y\right) \rho_{t}(x)+\int_{\mathbb{R}^{d}} b^{+}(x-y) \rho_{t}(y) \mathrm{d} y .
$$

Reduced description

$$
\begin{aligned}
\frac{\partial \bar{\rho}_{t}(x)}{\partial t}= & -\left(m^{s}+\bar{\varphi}^{-}(x)+\int_{\mathbb{R}^{d}} b^{-}(x-y) \bar{\rho}_{t}(y) \mathrm{d} y\right) \bar{\rho}_{t}(x) \\
& +\int_{\mathbb{R}^{d}} b^{+}(x-y) \bar{\rho}_{t}(y) \mathrm{d} y+\bar{z}(x)
\end{aligned}
$$

Kinetic equations

## Theorem

Thank You!

