The Enskog process:
Particle approximation for hard and soft potentials

Martin Friesen
joint work with:
Barbara Rüdiger
Padmanabhan Sundar

October 27, 2017
International Conference on Stochastic Analysis, Stochastic Control and
Applications
Hammamet, Tunisia

General setting

- We study a gas in the vacuum in dimension $d \geq 3$.
- Each particle is completely described by position r and velocity v.
- Particles move according to straight lines in the direction of their velocities.
- Particles perform binary, elastic collisions.

Velocities may be parametarized by $n \in S^{d-1}$ via

$$
\begin{aligned}
& v^{\star}=v+(u-v, n) n \\
& u^{\star}=u-(u-v, n) n
\end{aligned}
$$

where u, v incomming velocities and u^{\star}, v^{\star} outgoing velocities.

- Conservation of momentum

$$
v+u=v^{\star}+u^{\star}
$$

Conservation of kinetic energy

$$
|v|^{2}+|u|^{2}=\left|v^{\star}\right|^{2}+\left|u^{\star}\right|^{2} .
$$

The space-homogeneous case

Space-homogeneous case corresponds to particles uniformly distributed in \mathbb{R}^{d}. Sochastic methods

- Tanaka '79, '87
- Horowitz, Karandikar '90
- Fournier, Mouhot '06
- Fournier '15
- Fournier, Mischler '16
- Xu '16

Analytic methods

- Desvillettes, Mouhot '06
- Lu, Mouhot '12
- Morimoto, Wang, Yang '16

What is studied?

- Existence and uniqueness to space-homogeneous Boltzmann equation
- Existence of a density, finiteness of entropy
- Particle approximation, propagation of chaos
- Speed of convergence to equilibrium

But what happens if the particles are not distributed uniformly in space?

The Enskog equation

The time evolution is described by a particle density function $f_{t}(r, v) \geq 0$ subject to the Enskog equation

$$
\frac{\partial f_{t}(r, v)}{\partial t}+v \cdot\left(\nabla_{r} f_{t}\right)(r, v)=\mathcal{Q}\left(f_{t}, f_{t}\right)(r, v), \quad t>0, r, v \in \mathbb{R}^{d}
$$

with non-local and non-linear collision integral

$$
\mathcal{Q}\left(f_{t}, f_{t}\right)=\int_{E}\left(f_{t}\left(r, v^{\star}\right) f_{t}\left(q, u^{\star}\right)-f_{t}(r, v) f_{t}(q, u)\right) \beta(r-q) \sigma(|v-u|) d u d q Q(d \theta) d \xi
$$

where $E=\mathbb{R}^{2 d} \times(0, \pi] \times S^{d-2},|(u-v, n)|=\sin \left(\frac{\theta}{2}\right)|u-v|$.

- If $\beta=\delta_{0}$, then we get the classical Boltzmann equation.
- If $\beta=1$, then space-homogeneous Boltzmann equation.
- If $0<a \leq \beta \in L^{\infty}$, then similar to space-homogeneous Boltzmann equation.

In this work we consider $\beta \geq 0$ symmetric and compactly supported around zero

The physical collision kernel

In the physical dimension $d=3$ have
Boltzmanns original model

$$
\sigma(|z|)=|z| \quad \text { and } \quad Q(d \theta)=\sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) d \theta .
$$

Most common class of models: $s>2$

$$
\sigma(|z|)=|z|^{\gamma} \quad \text { and } \quad Q(d \theta)=b(\theta) d \theta
$$

with

$$
\gamma=\frac{s-5}{s-1} \in(-3,1) \quad \text { and } b(\theta) \sim \theta^{-1-\nu} \quad \text { and } \quad \nu=\frac{2}{s-1} \in(0,2)
$$

One distinguishes between the following:

Table:

Hard potentials	$0<\gamma<1$	$0<\nu<\frac{1}{2}$	$5<s$
Maxwellian molecules	$\gamma=0$	$\nu=\frac{1}{2}$	$5=s$
Soft potentials	$-1<\gamma<0$	$\frac{1}{2}<\nu<1$	$3<s<5$
Very soft potentials	$-3<\gamma<-1$	$1<\nu<2$	$2<s<3$

Role of angular singularity

- Typically $\int_{0}^{\pi} Q(d \theta)=\infty$.
- But $\int_{0}^{\pi} \theta^{a} Q(d \theta)<\infty$ for all $a>\nu$.

Assumptions

Our assumptions

1. $\beta \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$ and moderate angular singularity

$$
\int_{0}^{\pi} \theta Q(d \theta)<\infty
$$

2. $\sigma(|z|)=|z|^{\gamma}$ or $\sigma(|z|)=\left(1+|z|^{2}\right)^{\frac{\gamma}{2}}$ with $\gamma \in(-1,2]$

Some remarks:

- Only an upper bound and some Lipschitz-type estimate is imposed on σ.
- In the physical dimension $d=3$ we cover all cases where $s>3$ (Hard potentials, Maxwell molecules and Soft potentials).
- For Very soft potentials several technical difficulties have to be overcome.

Posing the problem

Main question:

Find the stochastic process (Enskog process) behind the Enskog equation.

Use such a representation to study:

- Existence and uniqueness theory.
- Particle approximation scheme / propagation of chaos.

This is an extension / continuation of
(Albeverio, Rüdiger, Sundar, '17, The Enskog process, J. Stat. Phys.)
Our methods are mainly stochastic, but different to the previous work.

Weak formulation of the Enskog equation

Do not know that every solution has a density \Rightarrow study weak formulation.

Definition

$\left(\mu_{t}\right)_{t \geq 0}$ (weak) solution to Enskog equation, if

- Has enough moments, i.e.

$$
\sup _{t \in[0, T]} \int_{\mathbb{R}^{2 d}}\left(|v|+|v|^{1+\gamma}\right) d \mu_{t}(r, v)<\infty, \quad \forall T>0
$$

- Satisfies the equation, i.e. for all $\psi \in C_{b}^{1}\left(\mathbb{R}^{2 d}\right)$

$$
\left\langle\psi, \mu_{t}\right\rangle=\left\langle\psi, \mu_{0}\right\rangle+\int_{0}^{t}\left\langle\boldsymbol{A}\left(\mu_{s}\right) \psi, \mu_{s}\right\rangle d s .
$$

with $\langle\psi, \mu\rangle=\int_{\mathbb{R}^{2 d}} \psi(r, v) d \mu(r, v)$ and

$$
\begin{aligned}
& \left(A\left(\mu_{s}\right) \psi\right)(r, v)=v \cdot\left(\nabla_{r} \psi\right)(r, v) \\
& +\int_{\mathbb{R}^{2 d}} \int_{S^{d-1}}\left(\psi\left(r, v^{\star}\right)-\psi(r, v)\right) \beta(r-q) \sigma(|v-u|) Q(d \theta) d \xi d \mu_{s}(q, u)
\end{aligned}
$$

Stochastic representation Theorem

Let $\left(\mu_{t}\right)_{t \geq 0}$ solution to Enskog equation such that

$$
t \longmapsto \int_{\mathbb{R}^{2 d}}|v|^{1+\gamma} d \mu_{t}(r, v)
$$

is continuous. Then:

- There exists a stochastic process $\left(R_{t}, V_{t}\right)$ such that

$$
\psi\left(R_{t}, V_{t}\right)-\psi\left(R_{0}, V_{0}\right)-\int_{0}^{t}\left(A\left(\mu_{s}\right) \psi\right)\left(R_{s}, V_{s}\right) d s
$$

is a martingale for all $\psi \in C_{b}^{1}\left(\mathbb{R}^{2 d}\right)$ and $\left(R_{t}, V_{t}\right) \sim \mu_{t}$.

- Moment estimates for $p \geq 1$ (where $\gamma^{+}=\max \{\gamma, 0\}$)

$$
\mathbb{E}\left(\sup _{s \in[0, t]}\left|V_{s}\right|^{p}\right) \leq\left(\mathbb{E}\left(\left|V_{0}\right|^{p}\right)+C \sup _{s \in[0, T]} \mathbb{E}\left(\left|V_{s}\right|^{\mid+\gamma^{+}}\right)\right) e^{C t}, \quad t \in[0, T], T>0
$$

- If V_{t} has $3+\gamma$ moments, then conservation of momentum and energy holds.

Above condition is satisfied if μ_{t} has $2+2 \gamma$ finite moments in v.

On the existence of solutions

Yet do not know whether such a solution to the Enskog equation exists! Case $Q((0, \pi])<\infty$ and σ nice

- Illner, Shinbrot '84
- Bellomo, Toscani '87
- Mischer, Perthame '97
- Boudin, Desvillettes '00

Case physical cases: we have some recent progress

- Alexandre, Morimoto, Ukai, Xu, Yang '11, '12 (several works)
- Solution is $f_{t}=\nu+g_{t} \sqrt{\nu}$ where $\nu(v)=(2 \pi)^{-\frac{3}{2}} e^{-\frac{|v|^{2}}{2}}$.
- g_{t} is small in a suitable weighted anisotropic Sobolev norm.
- Alexandre, Morimoto, Ukai, Xu , Yang '13 also solution of the form $f_{t}=\nu g_{t} \ldots$

These are Theories in the small, i.e. close to Maxwellian.
Why Gaussian ν ? Corresponds to equilibrium in the velocity space, i.e.

$$
\mathcal{Q}(\nu, \nu)=0 .
$$

Existence Enskog process: Soft potentials, Maxwellian molecules

Consider the case $\gamma \in(-1,0]$, i.e. soft potentials or Maxwellian molecules. Let μ_{0} be such that $\exists p>2$ and $\exists \varepsilon>0$ with

$$
\int_{\mathbb{R}^{2 d}}\left(|r|^{\varepsilon}+|v|^{p}\right) d \mu_{0}(r, v)<\infty .
$$

Then:

- There exists an Enskog process $\left(R_{t}, V_{t}\right)$ such that

$$
\mathbb{E}\left(\sup _{s \in[0, t]}\left|V_{s}\right|^{p}\right) \leq \mathbb{E}\left(\left|V_{0}\right|^{p}\right) e^{C t}, \quad t \geq 0
$$

- This solution satisfies the conservation laws

$$
\mathbb{E}\left(V_{t}\right)=\mathbb{E}\left(V_{0}\right), \quad \mathbb{E}\left(\left|V_{t}\right|^{2}\right)=\mathbb{E}\left(\left|V_{0}\right|^{2}\right)
$$

- $\mu_{t} \sim\left(R_{t}, V_{t}\right)$ is a solution to the Enskog equation.

Existence Enskog process: Hard potentials

Consider the case $\gamma \in(0,2]$, i.e. hard potentials.
Let μ_{0} be such that $\exists \varepsilon>0$ and $\exists a>0$ with

$$
C\left(\mu_{0}, a\right):=\int_{\mathbb{R}^{2 d}}\left(|r|^{\varepsilon}+e^{a|v|^{2}}\right) d \mu_{0}(r, v)<\infty .
$$

Then:

- There exists an Enskog process $\left(R_{t}, V_{t}\right)$ such that for all $p \geq 1$

$$
\mathbb{E}\left(\sup _{s \in[0, t]}\left|V_{s}\right|^{p}\right) \leq K_{p} C\left(\mu_{0}, c_{p} t\right), \quad t \geq 0 .
$$

- Solution satisfies the conservation laws.
- $\mu_{t} \sim\left(R_{t}, V_{t}\right)$ solves the Enskog equation.

Particle approximation

Let $n \geq 2$ be the number of particles in the gas.
We consider an IPS with Markov generator on $F \in C_{c}^{1}\left(\mathbb{R}^{2 d n}\right)$

$$
\begin{aligned}
\left(L_{n} F\right)(r, v) & =\sum_{k=1}^{n} v_{k} \cdot\left(\nabla_{r_{k}} F\right)(r, v) \\
& +\frac{1}{n} \sum_{k, j=1}^{n} \sigma\left(\left|v_{k}-v_{j}\right|\right) \beta\left(r_{k}-r_{j}\right) \int_{S^{d-1}}\left(F\left(r, v_{k j}\right)-F(r, v)\right) Q(d \theta) d \xi
\end{aligned}
$$

where $r=\left(r_{1}, \ldots, r_{n}\right), v=\left(v_{1}, \ldots, v_{n}\right)$ and $v_{k j}=v+e_{k}\left(v_{k}^{\star}-v_{k}\right)+e_{j}\left(v_{j}^{\star}-v_{j}\right)$.

- The martingale problem $\left(L, C_{c}^{1}\left(\mathbb{R}^{2 d n}\right), \rho^{(n)}\right)$ is well-posed.
- The transition semigroup leaves C_{b} invariant and is pointwisely continuous in t.
- The transition semigroup leaves C_{0} invariant and is strongly continuous.
- Study moment estimates with constants uniformly in $n \geq 2$.

Particle approximation

Let $\left(R_{1}^{n}, V_{1}^{n}\right), \ldots,\left(R_{n}^{n}, V_{n}^{n}\right)$ be the corresponding Markov process.
The sequence of empirical measures

$$
\mu^{(n)}=\frac{1}{n} \sum_{k=1}^{n} \delta_{\left(R_{k}^{n}, V_{k}^{n}\right)}
$$

is a random probability measure on $D\left(\mathbb{R}_{+} ; \mathbb{R}^{2 d}\right)$. Denote by $\pi^{(n)}$ the law of $\mu^{(n)}$. Then:

- $\mu^{(n)}$ is tight, i.e. $\pi^{(n)}$ is relatively compact.
- Let $\pi^{(\infty)}$ be any accumulation point of $\pi^{(\infty)}$. Then for any $P \in \operatorname{supp}\left(\pi^{(\infty)}\right)$

$$
\psi(r(t), v(t))-\psi(r(0), v(0))-\int_{0}^{t}\left(A\left(\mu_{s}\right) \psi\right)(r(s), v(s)) d s, \quad \psi \in C_{b}^{1}\left(\mathbb{R}^{2 d}\right)
$$

is a martingale w.r.t. P. Here $(r(t), v(t))$ coordinate process in $D\left(\mathbb{R}_{+} ; \mathbb{R}^{2 d}\right)$.

- Moment estimates for the IPS remain valid for all $P \in \operatorname{supp}\left(\pi^{(\infty)}\right)$.

Final remarks

- If uniqueness holds for the Enskog equation, then typically uniqueness holds for the Enskog process, i.e. $\pi^{(\infty)}=\delta_{P}$. This implies classically Propagation of chaos, i.e. $\mu^{(n)} \Longrightarrow P$.
- Some uniqueness is avaliable, but far from satisfactory. Work in progress...
- The moment assumptions for hard potentials are too strong.
- Existence of densities should be different to space-homogeneous case.

Thank You

Thank You!

Stochastic representation Theorem

Such an Enskog process can be obtained as a weak solution to the SDE

$$
\begin{aligned}
& R_{t}=R_{0}+\int_{0}^{t} V_{s} d s \\
& V_{t}=V_{0}+\int_{0}^{t} \int_{E} \alpha\left(V_{s}, u_{s}(\eta), \theta, \xi\right) 1_{\left[0, \sigma\left(\left|V_{s}-u_{s}(\eta)\right|\right) \beta\left(R_{s}-q_{s}(\eta)\right)\right]}(z) d N(\eta, z, \theta, \xi, s)
\end{aligned}
$$

where $E=[0,1] \times \mathbb{R}_{+} \times(0, \pi] \times S^{d-2}$

- $\alpha(v, u, \theta, \xi)=v^{\star}-v$ and $-\alpha(v, u, \theta, \xi)=u^{\star}-u$
- N is a Poisson random measure with compensator on $\mathbb{R}_{+} \times E$.

$$
d \widehat{N}=d \eta d z Q(d \theta) d \xi
$$

- $\left(q_{s}, u_{s}\right)$ RCLL-process on $([0,1], d z)$ such that $\left(q_{s}, u_{s}\right) \sim\left(R_{s}, V_{s}\right) \sim \mu_{s}$.

Idea of proof: Stochastic representation Theorem

The assertion follows from
Kurtz, Stockbridge '01, Electron. J. Probab.,
Stationary solutions and forward equations for controlled and singular martingale problems
provided we can show
(a) $A\left(\mu_{t}\right) \psi$ is continuous in (t, r, v) for any $\psi \in C_{b}^{1}\left(\mathbb{R}^{2 d}\right)$.
(b) There exists a solution to the martingale problem $\left(A\left(\delta_{(q, u)}\right), C_{b}^{1}\left(\mathbb{R}^{2 d}\right), \delta_{\left(r_{0}, v_{0}\right)}\right)$, for all $(q, u),\left(r_{0}, v_{0}\right) \in \mathbb{R}^{2 d}$.
(c) $\boldsymbol{A}\left(\mu_{t}\right)$ satisfies the technical separability condition:

There exists $\left(\psi_{k}\right)_{k \geq 1} \subset C_{b}^{1}\left(\mathbb{R}^{2 d}\right)$ such that

$$
\left.\left\{\left.\frac{1}{\zeta} A\left(\mu_{t}\right) \psi \right\rvert\, \psi \in C_{b}^{1}\left(\mathbb{R}^{2 d}\right)\right)\right\} \subset \overline{\left\{\left.\frac{1}{\zeta} A\left(\mu_{t}\right) \psi_{k} \right\rvert\, k \geq 1\right\}}
$$

with $\zeta(v, u)=\left(1+|v|^{2}\right)\left(1+|u|^{2}\right)$.
Closure is taken w.r.t. bounded pointwise convergence.
In contrast to other methods no uniqueness statement is needed!

- But: Yet do not know whether such a solution to the Enskog equation exists!

